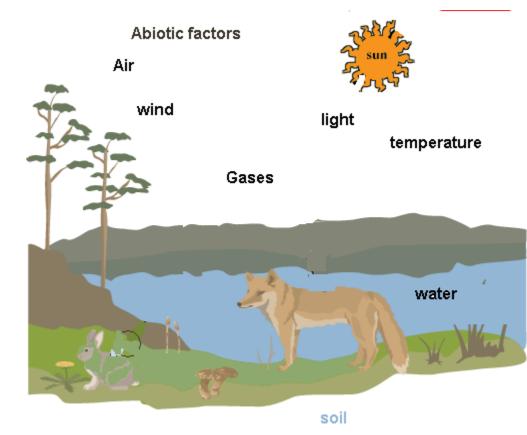

Principles of Ecology

What is Ecology?

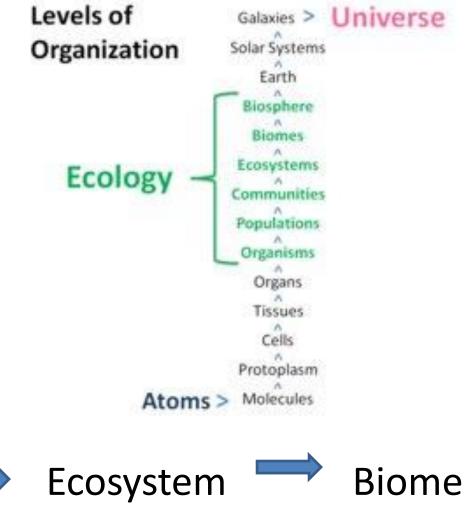
 Ecology is the study of interactions that occur between organisms and their environment


Biosphere

- Recall that the biosphere includes *all living things*
- In order to better understand the biosphere, we must first understand how living things are affected by nonliving (*abiotic*) and living (*biotic*) things present in their environment

Abiotic Factors

- Abiotic factors are the nonliving parts of the environment
- EX: temperature, humidity, light, soil
- Why should we include these factors when studying living things?


Biotic Factors

- <u>Biotic factors</u> are living things that inhabit an environment
- All organisms depend on other living things directly or indirectly for: food, shelter, reproduction, or protection

Levels of Organization

- To help ecologists study the interactions of the biotic and abiotic parts of the world, they have organized the living world into levels:
- Organism
 Population
 Community Eco

Population

- A *population* is a group of organisms of the same species that interbreed and live in the same area at the same time
- Members of the same population compete with each other for food, water, mates, or other resources
- EX: Zebras compete with each other for the same food source, reproduction, and water source

Community

- No species lives independently
- While populations are composed of individual organisms, communities are made up of different populations
- A community is made up of interacting populations in a certain area at a certain time
- EX: zebras live with lions, giraffes, elephants, and gazelles

Ecosystem

- An ecosystem is made up of interacting populations in a community and the community's abiotic factors
- EX: Populations of animals and plants interact with each other and with the abiotic components of the area (waterhole)

Biomes

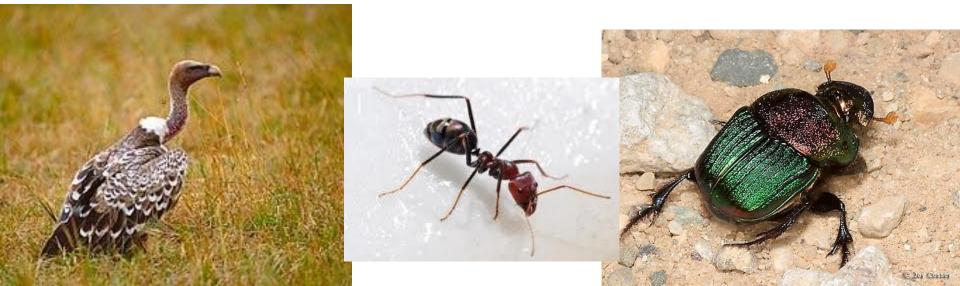
 Types of abiotic factors, like climate, humidity, temperature, and precipitation all work together to create different biomes where specific animal and plant species are found

- All organisms must "eat" in order to have energy to reproduce, grow, find food, and defend themselves.
- Ultimate source of energy for all life: <u>sun</u>

- Autotrophs /Producer- an organism that uses light energy to make energy-rich compounds
- Radiant energy from the Sun is converted into chemical energy that organisms can breakdown for metabolism
- EX: plants, green algae

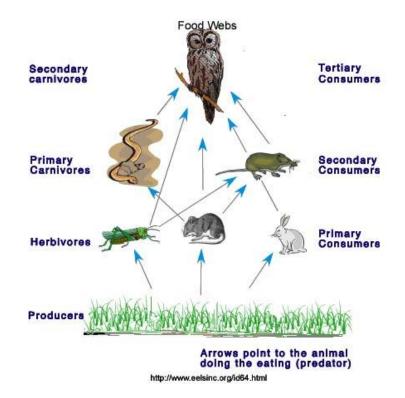
- Consumers/Heterotrophs depend upon autotrophs for nutrients and energy
- EX: deer, mice, lions, birds

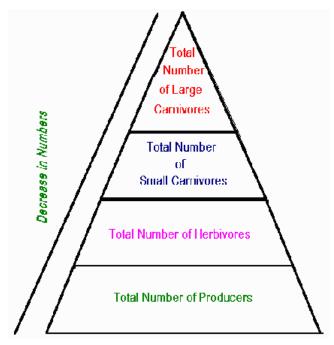
- A heterotroph that feeds only on autotrophs is called an *herbivore*
- EX: deer, mice, squirrels, zebras, giraffes, rabbits


- A heterotroph that eats only other heterotrophs is called a *carnivore*
- EX: tigers, lions, wolves, hawks, owls

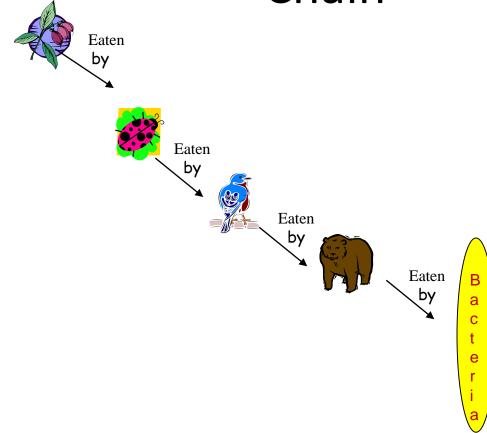
- A heterotroph that feeds on other heterotrophs as well as autotrophs is called an *omnivore*
- EX: bears, humans, raccoons, possums

- Some heterotrophs do not kill for food, but still eat other heterotrophs. These are called *scavengers*, and they eat animals that have already died.
- EX: Vultures, buzzards, ants, beetles


- Some organisms break down complex compounds of dead and decaying animals and plants into simpler molecules that can be absorbed. These organisms are called *decomposers*.
- EX: bacteria, fungi, worms

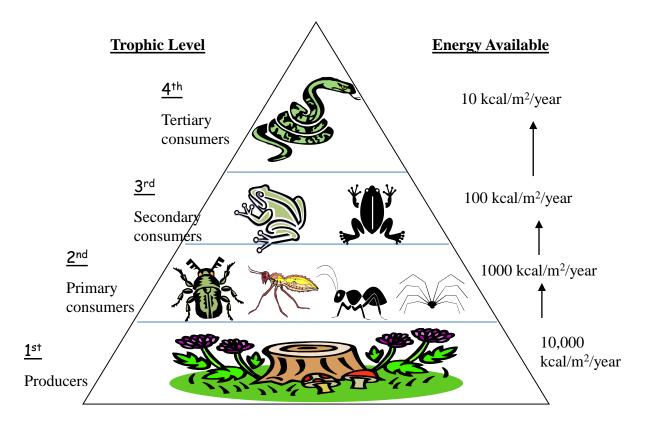

How Energy Flows in an Ecosystem

 These herbivores, carnivores, decomposers, and scavengers work together to create the food chain/food pyramid in an ecosystem



Trophic Levels and Food Chain

- Trophic level: A feeding level in an ecosystem
- Food chain: lineup of organisms that shows who eats who
- Shows how matter and energy move through an ecosystem


Trophic Levels and Food Chain

Energy Pyramid

- •Every time an organism eats, it obtains energy from its food
- •So energy is transferred from the 1st trophic level to the 2nd trophic level to the 3rd trophic level and so on.
- •Some of this energy is lost along the way during an organism's metabolism and as heat. This energy can be measured in kilocalories (kcal)
- •*Energy pyramid* picture showing how much energy is transferred to the different trophic levels in a food chain

Energy Pyramid

Energy Pyramid

- Notice that there are many more producers than there are consumers, and many more primary consumers than there are secondary consumers, etc
- When the producer is eaten by the consumer, it is an exchange of energy. Ironically, 90% of the energy that the producer had is lost, and the consumer only receives 10% of it. Therefore, to get enough energy to survive, the consumer must eat more producers, meaning that, to sustain the consumers, there must me many more producers.
- Also, there is much more energy to available to producers, which facilitates faster growth and larger numbers of producers

Survival Relationships

- In biomes all animals are part of some type of survival relationship
- <u>Predator-prey</u>: predators are consumers that hunt and eat other organisms called prey
- Predators have no natural enemies

Survival Relationships

- Symbiosis: relationship in which one species lives on, in, or near another species and affects its survival
- Three types:
 (1) Mutualism
 (2) Commensa
 (3) Parasitism

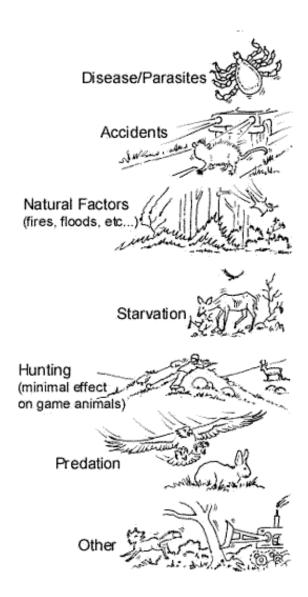
Mutualism

- Mutualism: type of symbiosis in which both species benefit
 - Ants living in the tropical acacia trees- trees are protected when ants attack animals that try to feed on the tree and ants receive nectar and shelter from the tree.

Courtesy of Todd Palmer

Commensualism

- Commensalism: type of symbiosis in which one species benefits and the other species is neither harmed nor benefited
 - Spanish moss grows on the branches of trees. The moss gets a habitat and the tree gets nothing.
 - Whale have barnacles that live on them. The barnacles have somewhere to live, but do not affect the whale.


Parasitism

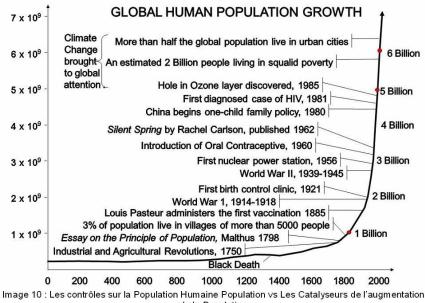
- Parasitism: type of symbiosis in which one species benefits and the other species is harmed
 - Parasite: organism that harms but does not kill another organism
 - Host: organism that is harmed by a parasite
 - Ticks feed on dogs, people, etc. The ticks get food (blood) and the hosts lose blood and can be infected with disease.
 - Best parasites do not kill their hosts...why?

Limiting Factors

- A limiting factor or limiting resource is a factor that controls a process, such as organism growth or species population size or distribution
- Examples of limiting factors include: availability of food, predation pressure, or availability of shelter

Carrying Capacity

- As a result of limiting factors (like food availability, disease, predation, etc) no population will continue to increase forever
- The carrying capacity is the largest number of individuals in a population that a given environment can support



Growth Rate

- The growth rate of a population is affected by three things:
- (1) the number of births
- (2) the number of deaths
- (3) the number of individuals that enter or leave the population
 - Immigration individuals that enter the population
 - Emmigration individuals that leave the population

Human Population Growth


- If birth rate is greater than death rate, population will grow
- If death rate is greater than birth rate, population will decrease
- Current human population growth is exponential
- Will the population continue to grow unchecked?

de la Population

Human Population Growth Discussion

- Human (or any species) growth cannot continue unchecked-why?
- What resources do we need to survive as a population?
- Are we just concerned about longevity of life? Or do we also care about anything besides physical necessities?

How does human population growth affect biodiversity?

Logistic Growth

- As resources become less available, the growth of a population slows or stops.
- An s-shaped curve of this growth pattern is called **logistic growth**

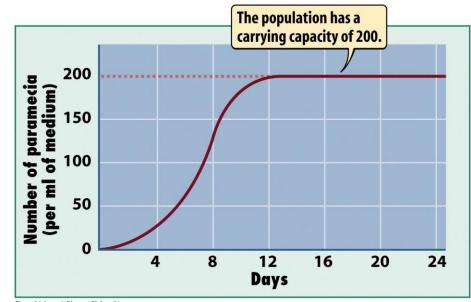
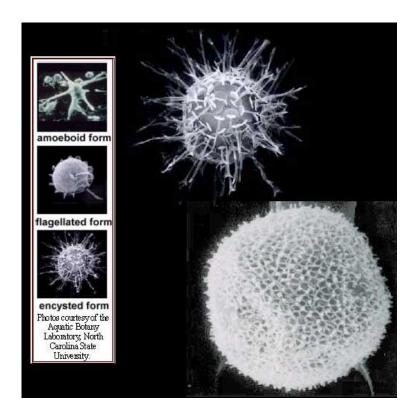



Figure 34-6 part 1 Discover Biology 3/e © 2006 W. W. Norton & Company, Inc.

What can affect population size: Disease

- Competition for limited resources, predation, and disease can all affect the size of a population
- EX: Dutch Elm Disease Elm trees are attacked by a fungus spread by a beetle. Result: many elm tree populations have been decimated by this fungus
- EX: *Pfiesteria* a toxic heterotrophic dinoflagellate associated with fishkills and algal blooms.

